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Modern Software is Complex

• Examples

• Web Applications (high-level APIs; service-oriented architectures;)

• Mobile Applications (business logics, analytics)

• User Interfaces (rich/advanced UI; single page applications)

• Robotics (high-level functionalities) 

• Factors

• Modern software contains ‘many’ ‘high-level’ operation

• The operations are varies, share some traits and differ some traits

• Variability management is key issue on modern software engineering

• High modularity is essential to maintain sustainable software evolution

• Modularity property includes reusability, flexibility and comprehension
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Issues on Modularity of Modern Software

• Feature : prominent or distinctive user-visible aspect, quality, or 
characteristic of a software system or systems (Kang et al.)


• Each ‘features’ of modern software 

• has some variabilities to provides distinctive functionality

• shares some commonalities to meet quality which the domain constrains 

• Examples

• robots : every move has backups when crash/collision

• web service : every user operation should be authenticated and logged

• Many other software product lines problem tries to handle
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Related Works

• Researches on localisation/modularisation of commonalities 

• Metaprogramming / Metaobject protocol support for OOP 

• Aspect-oriented Approaches (Kiczales at el. `97)

• Asymmetric Approach


• AspectJ : base program augmented with aspects (Kiczales at el. `01)

• Delta-oriented Programming : core module and set of delta module to 

apply changes like adding/modifying and removes (Schaefer at el. `10)

• Symmetric Approach


• Hyper/J : Multi-dimensional seperation of concern and its flexible 
concern composition tools (Ossher at el. `00)
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The Essence of Object-orientation

• Made for Simulation - SIMULA67 (Dahl at el. `67)

• Human to modeling the real world

• A perspective/framework of thinking, programming paradigm


• Inheritance/compose/refine to make the desired thing from abstract thing

• abstract thing - superclass / specific thing - subclass (and sub-subclass)

• The Thing, an object is consist of data and behavior 

• OOP discovers new ways of analysing requirement and design software 

• The success of OOP is inevitable by its idea, modeling the real world, since 
most of our software is working for real world 

• Other issues on OOP, traceability, performance and collaboration
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Bringing The Idea of Object-orientation into Behavior

Inheritance/compose/refine to make specific thing from abstract thing
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Inheritance/compose/refine to make specific behavior from abstract behavior

• The independence of behavior from object by supports its own hierarchical 
relationship and its own system. 

• We can achieve

• Reusability by localising commonalities to abstract behavior and 

variabilities to specific behavior.

• Flexibility by composing/refine variability to specific by inheritance with 

well-established OO conventions and techniques

• Comprehension by hiding the detail of behavior and enforcing proper level 

of abstraction in given programming context
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Self-composable Programming
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• Introduces mental model of hierarchical relationship of behavior

Event Object-oriented Behavior-oriented

Jane picks an apple Jane => Pick Pick => Jane

Jane sends an message Jane => Send Send => Jane

Person

Jane

Send

SendMessage

Abstract Object / Behavior 
(localisng commonalities)

Specific Object / Behavior 
(refining variabilities)

Create Instance through Inheritance
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Self-composability
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• For behavior construction and refinement

• To support behavior


• modular by construction / flexible refinement 

• Self-addition : composing behavior sequentially


• Self-update : refine specified portion of behavior


• Self-deletion : delete specified portion of behavior


• Self-manipulation : free-mode of manipulating portion of behavior
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Multi-level Inheritance of Behavior
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Send

SendMessage
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Multi-level Inheritance of Behavior
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Send

SendMessage

SendTextMessage SendVoiceMessage

Transmission
• Abstract-Specific Relationship


• Hierarchy on behavior

• Just like class hierarchy in OO design 

• Applying variability 

• inheritance of sub behavior from super 

behavior

• apply refinement to sub behavior

super-super behavior

super behavior

sub behavior

sub sub behavior
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Self-composable Domain Analysis

11

DBQuery

ReadDBQuery

WriteDBQuery

ReadPost

ReadMessage

ReadPostsRecents

ReadPostsPopular

ReadMessageLists

ReadMessages

WritePost

WriteMessage

CreatePost

UpdatePost

CreateMessage

DeleteMessage

Connection

Management

Operation-specific

Processing

Object-specific

Processing

Feature-specific

Processing

<Domain of Cross-cutting Concerns per Each Behavioral Level>

localise commonalities to super behavior (In case of web application)
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Code-level Overview of Self-composable Programming
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• Self-js : A JavaScript Implementation of Self-composable Programming

• Available at https://github.com/hiun/self-js (will release in stable)

• Method list for Self-composability

Method Name Description

Behavior#add Self-addition; Append given sub behavior

Behavior#sub#before Self-update; Insert given sub behavior before 
specified sub behavior

Behavior#sub#after Self-update; Insert given sub behavior after 
specified sub behavior

Behavior#sub#update Self-update; Replace sub behavior by given sub 
behavior 

Behavior#sub#delete Self-delete; Delete specified sub behavior

Behavior#sub#map Self-delete; Manipulate specified sub behavior in 
the context of given function

https://github.com/hiun/self-js
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Behavior Construction

13

var	Behavior	=	require('self');	

var	DBQuery	=	new	Behavior();	

DBQuery.add(auth);	
DBQuery.add(validate);	
DBQuery.add(monit);

• Database-backed, web API that supports both creation of post and 
messages with application-wide and object-specific constrain


• 1st step : behavior construction with application-wide constraint

• authentication check / data validation / monitoring


• Internals. Create new behavior array and push each sub behavior

auth

validate

monit

DBQuery behavior
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Behavior Inheritance
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var	ReadDBQuery	=	new	DBQuery();		
var	WriteDBQuery	=	new	DBQuery();		

var	ReadMessage	=	new	ReadDBQuery();	
var	WriteMessage	=	new	WriteDBQuery();

• 2nd step : Inherit constructed super behavior and refine to sub-sub behavior

• Internals. create new behavior instance, inherit sub behavior and method list

auth

DBQuery

validate

monit

DBQuery

ReadDBQuery

DBQuery

WriteDBQuery

ReadDBQuery

ReadMessage

WriteDBQuery

WriteMessage
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Behavior Refinement
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//operation-specific	refinement	
ReadDBQuery.add(cacheLookup);		
ReadDBQuery.delete(validate);		
WriteDBQuery.add(writeBack);		
WriteDBQuery.validate.before(SQLInjChk);	

//object-specific	refinement	
ReadMessage.add(readMsgExec);		
WriteMessage.add(writeMsgExec);	

• 3rd step : Refine inherited sub-behavior to create the desired module

• Internals. Sub behavior placed element in array, manipulating array to refine

auth

ReadDBQuery

validate

monit

ReadDBQuery

ReadMessage

WriteDBQuery

WriteMessage

cacheLookup

auth

WriteDBQuery

validate

monit

writeBack

SQLInjChk

readMsgExec writeMsgExec
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Behavior Execution
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auth

ReadMessage

validate

monit

cacheLookup

auth

WriteMessage

validate

monit

writeBack

SQLInjChk

readMsgExec
writeMsgExec

• 4th step : Executed refined behavior with initial arguments

• Internals. Sequentially invoke sub behavior with initial argument and returning 

value of succeeding sub behavior

CreateMessage.exec([Arguments],	Handler);
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Preliminary Empirical Evaluation Result
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• Performs evaluation based on high-level implementation of web service 
compare to Aspect-oriented Programming(AOP) based implementation


• Implementing web service for database operation around User and Post 
object with for level of inheritance.


• The efficiency of SLOC come from explicit manipulation for only changed.

Feature Name (Method)
User.getName

User.getProfile

User.getPosts

User.getOnline

Post.getRecentSummary

Post.getRecentsWithoutImage

Post.getPopularSummary

Post.getPopularWithoutImage

Measurements AOP Self

Number of Implemented 
Feature 8

SLOC for Integration (a) 26 14

SLOC of cross-cutting 
concerns (b) 18 6

Avg. SLOC per single 
cross-cutting concern (b/8)
 2.25 0.75
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Preliminary Predictive Evaluation Result
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• Using regression analysis to predict SLOC growth per advancement of feature

• As a result, we could confirm efficiency of Self-composable Programming 

with manipulating only part that has updated

Lev. of 
Inheritance

Num. of

super

Num. of 
sub

SLOC for

Refinement

Total

SLOC

1st 1 2 5 10
2nd 2 5 5 50
3rd 5 10 5 250
4th (projected) 1,250
5th (projected) 6,249

AOP SLOC

Self SLOC

y	=	2.8845e1.956x

y	=	2e1.6094x

(projected)

(projected)

2,500

2,000

1,500

1,000

500

1 2 3

1st 1 2 10 20
2nd 2 5 15 150
3rd 5 10 20 1,000
4th (projected) 7,211
5th (projected) 50,988

<Self-js Implementation>

<AspectJ-like Implementation>
SL

O
C
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m
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Level of Feature Advancement
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Limitations and Future Research Directions
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• Scattering and tangling of cross-cutting concerns refinements

• Same problems of object-oriented design has

• Robust architectural pattern for representing system behavior directly


• e.g. DCI architecture for object-oriented collaboration (Reenskaug at el. `09) 

• Explicit refinment is like metaprogramming may consider unsafe

• High-level, implicit refinement by using traits/mixin

• Domain-specific optimisation by custom module structure/method name 

• More empirical studies for proofing efficiency and enhancing theory


• Dedicated language for modeling real-world behavior
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Self-composable Programming
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• Technique for code-level modeling real-world behavior

• Modularisation by abstract-specific behavior hierarchy

• Flexible reusing through OO-fashioned composition and inheritance

• Opens possibility of advanced refinement by well-established OO theory


• Benefits for highly complex modern software

• Support code reuse through managed localisation

• Flexible software composition

• Improve productivity by raising level of abstraction 

• I am looking for Ph.D. position to continue research on programming 
languages and software engineering please letting me know if you are 
interested!


