
Object-orientation for Behavior 
Modeling and Composition

Hiun Kim

B.S. Student / Computer Science

Sejong University, Seoul, Korea

2017 Korea Conference on Software Engineering

hiun@divtag.sejong.edu

mailto:hiun@divtag.sejong.edu


of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Modern Software is Complex

• Examples

• Web Applications (high-level APIs; service-oriented architectures;)

• Mobile Applications (business logics, analytics)

• User Interfaces (rich/advanced UI; single page applications)

• Robotics (high-level functionalities) 

• Factors

• Modern software contains ‘many’ ‘high-level’ operation

• The operations are varies, share some traits and differ some traits

• Variability management is key issue on modern software engineering

• High modularity is essential to maintain sustainable software evolution

• Modularity property includes reusability, flexibility and comprehension

2



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Issues on Modularity of Modern Software

• Feature : prominent or distinctive user-visible aspect, quality, or 
characteristic of a software system or systems (Kang et al.)


• Each ‘features’ of modern software 

• has some variabilities to provides distinctive functionality

• shares some commonalities to meet quality which the domain constrains 

• Examples

• robots : every move has backups when crash/collision

• web service : every user operation should be authenticated and logged

• Many other software product lines problem tries to handle

3



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Related Works

• Researches on localisation/modularisation of commonalities 

• Metaprogramming / Metaobject protocol support for OOP 

• Aspect-oriented Approaches (Kiczales at el. `97)

• Asymmetric Approach


• AspectJ : base program augmented with aspects (Kiczales at el. `01)

• Delta-oriented Programming : core module and set of delta module to 

apply changes like adding/modifying and removes (Schaefer at el. `10)

• Symmetric Approach


• Hyper/J : Multi-dimensional seperation of concern and its flexible 
concern composition tools (Ossher at el. `00)

4



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

The Essence of Object-orientation

• Made for Simulation - SIMULA67 (Dahl at el. `67)

• Human to modeling the real world

• A perspective/framework of thinking, programming paradigm


• Inheritance/compose/refine to make the desired thing from abstract thing

• abstract thing - superclass / specific thing - subclass (and sub-subclass)

• The Thing, an object is consist of data and behavior 

• OOP discovers new ways of analysing requirement and design software 

• The success of OOP is inevitable by its idea, modeling the real world, since 
most of our software is working for real world 

• Other issues on OOP, traceability, performance and collaboration

5



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Bringing The Idea of Object-orientation into Behavior

Inheritance/compose/refine to make specific thing from abstract thing

6

Inheritance/compose/refine to make specific behavior from abstract behavior

• The independence of behavior from object by supports its own hierarchical 
relationship and its own system. 

• We can achieve

• Reusability by localising commonalities to abstract behavior and 

variabilities to specific behavior.

• Flexibility by composing/refine variability to specific by inheritance with 

well-established OO conventions and techniques

• Comprehension by hiding the detail of behavior and enforcing proper level 

of abstraction in given programming context



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Self-composable Programming

7

• Introduces mental model of hierarchical relationship of behavior

Event Object-oriented Behavior-oriented

Jane picks an apple Jane => Pick Pick => Jane

Jane sends an message Jane => Send Send => Jane

Person

Jane

Send

SendMessage

Abstract Object / Behavior 
(localisng commonalities)

Specific Object / Behavior 
(refining variabilities)

Create Instance through Inheritance



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Self-composability

8

• For behavior construction and refinement

• To support behavior


• modular by construction / flexible refinement 

• Self-addition : composing behavior sequentially


• Self-update : refine specified portion of behavior


• Self-deletion : delete specified portion of behavior


• Self-manipulation : free-mode of manipulating portion of behavior



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Multi-level Inheritance of Behavior

9

Send

SendMessage



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Multi-level Inheritance of Behavior

10

Send

SendMessage

SendTextMessage SendVoiceMessage

Transmission
• Abstract-Specific Relationship


• Hierarchy on behavior

• Just like class hierarchy in OO design 

• Applying variability 

• inheritance of sub behavior from super 

behavior

• apply refinement to sub behavior

super-super behavior

super behavior

sub behavior

sub sub behavior

. 

. 

.

. 

. 

.

. 

. 

.



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Self-composable Domain Analysis

11

DBQuery

ReadDBQuery

WriteDBQuery

ReadPost

ReadMessage

ReadPostsRecents

ReadPostsPopular

ReadMessageLists

ReadMessages

WritePost

WriteMessage

CreatePost

UpdatePost

CreateMessage

DeleteMessage

Connection

Management

Operation-specific

Processing

Object-specific

Processing

Feature-specific

Processing

<Domain of Cross-cutting Concerns per Each Behavioral Level>

localise commonalities to super behavior (In case of web application)



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Code-level Overview of Self-composable Programming

12

• Self-js : A JavaScript Implementation of Self-composable Programming

• Available at https://github.com/hiun/self-js (will release in stable)

• Method list for Self-composability

Method Name Description

Behavior#add Self-addition; Append given sub behavior

Behavior#sub#before Self-update; Insert given sub behavior before 
specified sub behavior

Behavior#sub#after Self-update; Insert given sub behavior after 
specified sub behavior

Behavior#sub#update Self-update; Replace sub behavior by given sub 
behavior 

Behavior#sub#delete Self-delete; Delete specified sub behavior

Behavior#sub#map Self-delete; Manipulate specified sub behavior in 
the context of given function

https://github.com/hiun/self-js


of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Behavior Construction

13

var	Behavior	=	require('self');	

var	DBQuery	=	new	Behavior();	

DBQuery.add(auth);	
DBQuery.add(validate);	
DBQuery.add(monit);

• Database-backed, web API that supports both creation of post and 
messages with application-wide and object-specific constrain


• 1st step : behavior construction with application-wide constraint

• authentication check / data validation / monitoring


• Internals. Create new behavior array and push each sub behavior

auth

validate

monit

DBQuery behavior



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Behavior Inheritance

14

var	ReadDBQuery	=	new	DBQuery();		
var	WriteDBQuery	=	new	DBQuery();		

var	ReadMessage	=	new	ReadDBQuery();	
var	WriteMessage	=	new	WriteDBQuery();

• 2nd step : Inherit constructed super behavior and refine to sub-sub behavior

• Internals. create new behavior instance, inherit sub behavior and method list

auth

DBQuery

validate

monit

DBQuery

ReadDBQuery

DBQuery

WriteDBQuery

ReadDBQuery

ReadMessage

WriteDBQuery

WriteMessage



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Behavior Refinement

15

//operation-specific	refinement	
ReadDBQuery.add(cacheLookup);		
ReadDBQuery.delete(validate);		
WriteDBQuery.add(writeBack);		
WriteDBQuery.validate.before(SQLInjChk);	

//object-specific	refinement	
ReadMessage.add(readMsgExec);		
WriteMessage.add(writeMsgExec);	

• 3rd step : Refine inherited sub-behavior to create the desired module

• Internals. Sub behavior placed element in array, manipulating array to refine

auth

ReadDBQuery

validate

monit

ReadDBQuery

ReadMessage

WriteDBQuery

WriteMessage

cacheLookup

auth

WriteDBQuery

validate

monit

writeBack

SQLInjChk

readMsgExec writeMsgExec



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Behavior Execution

16

auth

ReadMessage

validate

monit

cacheLookup

auth

WriteMessage

validate

monit

writeBack

SQLInjChk

readMsgExec
writeMsgExec

• 4th step : Executed refined behavior with initial arguments

• Internals. Sequentially invoke sub behavior with initial argument and returning 

value of succeeding sub behavior

CreateMessage.exec([Arguments],	Handler);



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Preliminary Empirical Evaluation Result

17

• Performs evaluation based on high-level implementation of web service 
compare to Aspect-oriented Programming(AOP) based implementation


• Implementing web service for database operation around User and Post 
object with for level of inheritance.


• The efficiency of SLOC come from explicit manipulation for only changed.

Feature Name (Method)
User.getName

User.getProfile

User.getPosts

User.getOnline

Post.getRecentSummary

Post.getRecentsWithoutImage

Post.getPopularSummary

Post.getPopularWithoutImage

Measurements AOP Self

Number of Implemented 
Feature 8

SLOC for Integration (a) 26 14

SLOC of cross-cutting 
concerns (b) 18 6

Avg. SLOC per single 
cross-cutting concern (b/8)
 2.25 0.75



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Preliminary Predictive Evaluation Result

18

• Using regression analysis to predict SLOC growth per advancement of feature

• As a result, we could confirm efficiency of Self-composable Programming 

with manipulating only part that has updated

Lev. of 
Inheritance

Num. of

super

Num. of 
sub

SLOC for

Refinement

Total

SLOC

1st 1 2 5 10
2nd 2 5 5 50
3rd 5 10 5 250
4th (projected) 1,250
5th (projected) 6,249

AOP SLOC

Self SLOC

y	=	2.8845e1.956x

y	=	2e1.6094x

(projected)

(projected)

2,500

2,000

1,500

1,000

500

1 2 3

1st 1 2 10 20
2nd 2 5 15 150
3rd 5 10 20 1,000
4th (projected) 7,211
5th (projected) 50,988

<Self-js Implementation>

<AspectJ-like Implementation>
SL

O
C

 o
f I

m
pl

em
en

ta
tio

n

Level of Feature Advancement



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Limitations and Future Research Directions

19

• Scattering and tangling of cross-cutting concerns refinements

• Same problems of object-oriented design has

• Robust architectural pattern for representing system behavior directly


• e.g. DCI architecture for object-oriented collaboration (Reenskaug at el. `09) 

• Explicit refinment is like metaprogramming may consider unsafe

• High-level, implicit refinement by using traits/mixin

• Domain-specific optimisation by custom module structure/method name 

• More empirical studies for proofing efficiency and enhancing theory


• Dedicated language for modeling real-world behavior



of 20Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

Self-composable Programming

20

• Technique for code-level modeling real-world behavior

• Modularisation by abstract-specific behavior hierarchy

• Flexible reusing through OO-fashioned composition and inheritance

• Opens possibility of advanced refinement by well-established OO theory


• Benefits for highly complex modern software

• Support code reuse through managed localisation

• Flexible software composition

• Improve productivity by raising level of abstraction 

• I am looking for Ph.D. position to continue research on programming 
languages and software engineering please letting me know if you are 
interested!


